Solar Forecast Arbiter .org An open source evaluation framework for solar forecasting

Will Holmgren

Tony Lorenzo

Department of Hydrology and Atmospheric Sciences

The University of Arizona

Cliff Hansen

Photovoltaics and Distributed System Integration Department

ELECTRIC POWER RESEARCH INSTITUTE

Grid Operations and Planning

Justin Sharp

Principal and Owner

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Project goal

Open-source framework for solar forecast evaluations that are impartial, repeatable, and auditable.

- Implement objective, consistent evaluation scenarios and metrics → better solar forecasts
- Develop user confidence in solar forecasts \rightarrow system integration
- Standardize evaluations \rightarrow reduce provider and user costs
- Easily extend to wind power and load forecasting

Three Key Tasks

Stakeholder Engagement

- Help define use cases
- Guide selection of benchmarks, metrics, data sets
- Contribute data
- Aid long-term planning

Support DOE Solar Forecast 2 Teams

- Define test data
- Provide evaluation services

Office of ENERGY EFFICIENCY

NEWABLE ENERGY

Construct the Solar Forecast Arbiter

- Open source
- Thoroughly test, document, validate

U.S. DEPARTMENT OF

Stakeholder Engagement

5 primary topics

- Use cases
- Data format/API
- Data policies

- Benchmark forecasts
- Evaluation metrics

Please join the Stakeholder Committee! (open to all)

solarforecastarbiter.org/ stakeholdercommittee

Year 1 engagement process

Stakeholder Engagement: Year 1

1. Use cases

5 primary topics

- 2. Data format/API
- 3. Reference data & Data policies
- 4. Benchmark forecasts
- 5. Evaluation metrics

Please join the Stakeholder Committee! (open to all) solarforecastarbiter.org

U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Use Cases

solarforecastarbiter.org/ usecases

1.A. Compare a forecast to measurements

1.B. Compare a probabilistic forecast to measurements

6

1.E. Evaluate an event forecast

1.F. Conduct forecast trial

U.S. DEPARTMENT OF

Use Cases: What is a forecast?

Consider the "Vendor A Solar Power Forecast"...

- New forecast each hour of each day
- Each forecast extends 48 hours
- Up to 47 forecasts valid at one time!
- Forecast for a specific power plant or aggregation of plants
- To determine if the Vendor A solar forecast is a good forecast, we need to be more specific about the evaluation problem.

The Solar Forecast Arbiter...

- *Encourages* the user to consider her application
- *Requires* the user to fully spec forecast definition, evaluation criteria

U.S. DEPARTMENT OF

ffice of ENERGY EFFICIENCY RENEWABLE ENERGY

Forecast runs concatenated into a forecast evaluation timeseries

Application: short term market Requirement: hour ahead forecast

Forecast runs concatenated into a forecast evaluation timeseries

Application: short term market Requirement: hour ahead forecast

Forecast runs concatenated into a forecast evaluation timeseries

Application: short term market Requirement: hour ahead forecast

Forecast taxonomy

1h

1h

Lead time to start

10

Forecast User

Forecast Provider A

Forecast Provider B

Forecast Provider C

Solar Forecast Arbiter

- Website & API
- Reference
 databases
- Secure databases
- Data QA/QC
- Benchmark
 power fx
- Analysis
 engine

U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

11

Solar Forecast Arbiter Architecture

Web Portal and API

- Create Sites, Observations, Forecasts data objects
- Upload Obs/Fx timeseries data
- Download metadata/data
- Share metadata/data
- Run analyses, view reports
- Additional pages include:
 - Help
 - Metrics definitions, examples
 - How to contribute

U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY

& RENEWABLE ENERGY

16

Solar Forecast Arbiter Architecture

Core Framework

- Accept point data of varying 1. types and qualities
- Calculate PV power from weather 2. inputs and system metadata

COLLABORATIVE

Sandia

National

- 3. Compare measurements, test forecasts, benchmark forecasts
- 4. Generate reports

MODELING

THE UNIVERSITY

OF ARIZONA

Solar Forecast Arbiter Architecture

Systems Layer

CentOS

THE UNIVERSITY

OF ARIZONA

- Operating system, web server, databases
- Built using Open Shift, virtual machines, and Vagrant files
- Enables users to install the entire framework on their own machines (private data not included)
- Architecture ensures that framework can be maintained beyond the initial funding period

Vagrant

Sandia

National

Validation and Reference Data Sources

Reference Data

- NOAA SURFRAD
- Sandia
- NREL
- FPRI
- DOE RTC
- U. Oregon network

User Data

- Stakeholder supplied
- Owner controls access •
- Commitments: TEP, Abengoa, Southern Co.

ENEWABLE ENERGY

We need your help •

Data Policies

solarforecastarbiter.org/ datapolicies

- 1. Organizations retain ownership of the data they upload to the framework.
- 2. Users upload data to the framework on behalf of organizations.
- 3. Users have complete control over how their data may be accessed by other users (public, NDA).
- 4. Users may delete data from the framework.
- 5. The framework will not sell data that it controls (e.g. statistics).
- 6. All non-public data will be securely deleted by the conclusion of the DOE funding period (June 30, 2021).

Poster Session Today!

solarforecastarbiter.org/ Benchmark Forecasts benchmarks

Office of ENERGY EFFICIENCY

& RENEWABLE ENERGY

- For 1 hour 7 day ahead and longer horizons:
 - NOAA operational models forecast irradiance, cloud cover, weather
 - Most operational NWP irradiance forecasts have known limitations
 - a) Derive irradiance or PV power from cloud cover
 - b) Bias correction
- For intrahour horizons:
 - Persistence, persistence of the clear sky index
 - ARMA model fitted to site-specific data
- For net load:
 - Net load = True load BTM PV
 - Use regression w/weather obs for true load?
- Probabilistic? Aggregates?

U.S. DEPARTMENT OF

Total cloud cover (Mixed intervals Average) @ Entire atmosphere

Reports and Metrics

Reports

- Design templates with stakeholder input
- Framework uses templates to automatically generate custom reports
- Time series plots, scatter plots, reliability diagrams, etc.
- Standard and "advanced" error metrics
- Enable direct comparisons between anonymized vendors or researchers and benchmarks
- Options for analysis based on conditions (time of day/year, events, etc.)

U.S. DEPARTMENT OF

Reports and Metrics

Metrics

- Choose default metrics with stakeholder input
- Depending on use case, users have final control over metrics selection
- Build on DOE Solar Forecasting I metrics results
- Standard metrics (MAE, MAPE, RMSE, MBE)
- Advanced metrics (KSI, Renyi entropy)
- Probabilistic metrics (Brier, RPS)
- Forecast skill metrics to directly compare test and benchmark forecasts

U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

23

Reports and Metrics

Cost metrics

- 1. User supplied fixed \$/MW
- 2. User supplied time of day \$/MW
- 3. User supplied time series of \$/MW
- 4. User supplied time series of \$/MW for predefined error bins
- 5. Costs related to ramps or variability (help needed)
- How do you quantify cost of forecast errors without too much info?
- Report includes cost saved or incurred relative to benchmark forecasts

Different complexity for different users

Project Timeline/Milestones

25

Transition framework to new operator.

U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Summary

- Open source, reproducible, transparent framework
- Stakeholder feedback guides project need your help!
- Use cases tailored to needs of solar forecast stakeholders
- Reference datasets follow data policies
- Benchmark forecast capability
- Automated reports including bulk metrics, analysis filters
- Sign up for project updates, stakeholder committee at: solar forecast arbiter . org

